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Abstract

A method for generating Hybrid Randomized quasi-Monte Carlo sequences using 
Stratified Sampling is introduced.  An implementation of the method in the Python 
programming language is applied to three types of problems: one-dimensional 
integration, multi-dimensional integration, and the pricing of European call options.  
Sequences generated using this implementation have been named BFS sequences in this 
paper.  Results from problems using BFS sequences are compared with pseudorandom 
sequences and random-shift Halton sequences.  Favorable numerical results using BFS 
sequences are obtained, especially for the one-dimensional case. 

Introduction

Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods make use of pseudorandom and low 
discrepancy sequences, respectively.  In some use cases, such as integration, Monte Carlo methods may
not perform well because the pseudorandom data that is utilized isn’t sufficiently uniform and exhibits 
clustering and holes.  In such cases, QMC methods perform better because low discrepancy sequences 
are more uniform.  When more than one QMC simulation is performed, a new independent low 
discrepancy sequence can be generated by permuting the original sequence.  This step is necessary 
because QMC sequences are not random.  This technique is called Randomized quasi-Monte Carlo 
(RQMC).  Hybrid sequences are created by combining methods from MC and QMC sequence 
generation.

In this paper, we will discuss a method to generate hybrid RQMC sequences using Stratified Sampling. 
Stratified sampling means dividing the sample space into subsets (or strata) and constraining the 
number of samples drawn from each subset.  Glasserman [1] provides a method of stratifying the unit 
interval (0, 1) and extends this method to the unit hypercube.  We will use his method to construct 
hyperrectangles within the unit hypercube and extend it slightly.  We will also address the primary 
issues associated with stratified sampling, namely

i. We must know in advance how many samples will be taken by Hull [3]
ii. The sequence can’t be extended easily without restarting the simulation
iii. Stratified sampling is impractical for dimensions greater than about s=5 by Glasserman [1]
iv. Jittered Stratified sampling or hypercube construction suffers from the “curse of 

dimensionality” by Jarosz [2]
v. Completely dividing the hypercube in sub-hyperrectangles forces the value of N, i.e. one can’t 

freely pick N



Stratified Sampling

The simplest approach to stratified sampling of the unit interval (0, 1) involves partitioning the space 
into n equal parts, then taking a single sample within each interval, as shown below.
 

i=0 i=n

The position of a coordinate is given by the expression

x=
i+u i

n
, i=0,1, 2, …n; u∼U (0,1)

This concept can be extended to two dimensions with the unit square (0,1) x (0,1) divided into
K1⋅K2 equally sized squares or rectangles.  In general, the s-dimensional unit hypercube can be 

divided into K1⋅K2⋅... K s equally sized hyperrectangles.  If K1=K2=... K s then the hyperrectangle 
is a hypercube.  The V j coordinate of the vector is defined to be

V j=
i j+u j

K j

, j=0,1,... , s ; u∼U (0,1)

BFS Sequences

A two dimensional plot with 1,000 samples is shown for pseudurandom, Halton, and BFS sequences.

Pseudorandom Halton BFS



One-Dimensional Case

For the one-dimensional case, construction of BFS sequences is very simple and can be implemented in
just a few lines of code.  Below is the procedure to generate N BFS numbers:

1. Generate list of sequential numbers i = 0,…,N
2. For i=0,1,…

set x = i + rand()  //rand() generates u~U(0,1)
set x = x / N 

As an example, an implementation in Python is given below:

import random
rand = random.random

x = [(i + rand()) / N for i in range(N)]

Multi-Dimensional Case 

For the multi-dimensional case, the procedure is similar but complicated by the requirement that 
dimensions can have different numbers of partitions.  Our goal is to create at least N s-dimensional 
boxes as close to a hypercube as possible.  The number of partitions per dimension is calculated as

n=N (1/ s) .  Since n isn’t usually a whole number (in which case this would be a hypercube), we need
to calculate how many dimensions need partitions of size Floor(n).  The remaining dimensions will 
have partitions of size Floor(n+1).  The multiplication of all the partition sizes together which are in 
the set {n, n+1}, should be the combination of partition sizes that produce the smallest value that just 
exceeds N.   Given s and N, we can solve for x, which is the number of partitions of size Floor(n).  s-x 
will be the number of partitions of size Floor(n+1).

x < s Floor (n+1)−N

Proof:

N < x Floor (n)+(s−x) Floor (n+1)
N < x Floor (n)+s Floor (n+1)−x Floor (n+1)

N < x (Floor (n)−Floor (n+1))+s Floor (n+1)

N < x (−1)+s Floor (n+1)

x < s Floor (n+1)−N
■



BFS Algorithm

We are now ready to present the algorithm to generate N BFS vectors of dimension s.

1.Calculate number of partitions per dimension
2. Calculate the number of dimensions that need size n
3.Randomly assign x dimensions to have n partitions; the remaining

s-x dimensions will have n+1 partitions
4. For i0=0,1,. .. p0

For i1=0,1,... p1

.

.

.
For is=0,1,. .. ps

set x=(
i0+rand ( )

p0

, ... ,
is+rand ()

ps
)

5. Shuffle the sequence
6. Delete N – length(seq) samples from the end of the sequence

Some explanation is needed for steps 5 and 6.  Together, their goal is to uniformly (randomly) delete 
enough samples so that the total number of samples is N.  This approach leads one to conclude that the 
sequence needs to be described as a hybrid sequence, i.e. a mixing or combination of a (R)QMS and 
MC sequence.  For more on hybrid-Monte Carlo sequences, see Ökten [4].

Implementation of BFS

Implementation of the BFS sequence generator is contained in the file bfs.py.  The prototype for the 
BFS generator function is

bfs_seq(s, N, hyper_rect=True, shuffle=True, exact_N=True)

s: the dimension
N: requested number of vectors
hyper_rect: True for hyperrectangle; False for hypercube
shuffle: True to shuffle the vector list by index
exact_N: True to cut the vector list to N elements

The default values will return N BFS vectors of dimension s.  s ranges from 1 to 15 dimensions.  If 
exact_N is set to False, then we sample from the complete set of hyperrectangles.  The user should 
adjust their code to work with this new N.  This is easily done by checking the length of the returned 
list and adjusting N to match its length.

Note: All coding was done in the Python programming language.  Jupyter Notebook was used for 
coding and analysis.  Mersenne Twister is the default pseudorandom generator for Python.  It was used 
to generate all of the pseudorandom data for this report.



Analysis of the Algorithm

The algorithm doesn’t strictly use hypercubes because the N values can be so far away from the 
requested N.  The table below shows the requested values of N along with the N value necessary to 
completely stratify the unit hypercube into sub-hypercubes.  The red values show where the generated 
N is more than 50% above the requested N.  Using all of the sample points is impractical.  
Alternatively, throwing that many points away destroys the stratification.

Dimension N=10,000
Requested

N=100,000
Requested

N=500,000
Requested

s=1 10,000 100,000 500,000

s=2 10,000(1002
) 100,489(3172

) 501,264(7082
)

s=3 16,807 103,823 512,000

s=4 10,000 104,976 531,441

s=5 16,807 161,051 537,824

s=6 15,625 117,649 531,441

s=7 16,384 279,936 823,543

s=8 65,536 390,625 1,679,616

s=9 19,683 262,144 1,953,125

s=10 59,049 (310
) 1,048,576 (410

) 1,048,576 (410
)

For this reason, BFS (by default) stratifies the unit hypercube using hyperrectangles instead of 
hypercubes.  The table below shows the percent of generated points greater than the requested number 
N, i.e. the percent of points that will be discarded.

dimension N=10,000
Requested

N=100,000
Requested

N=500,000
Requested

s=1 0% 0% 0%

s=2 0% 0.49% 0.25%

s=3 1.61% 1.59% 1.11%

s=4 0% 4.74% 5.92%

s=5 5.52% 0% 7.03

s=6 0% 15.00% 5.92%

s=7 18.62% 11.11% 3.59%

s=8 14.27% 2.34% 11.11%

s=9 23.79% 9.58% 0.24%

s=10 14.19% 4.74% 15.23



Clearly, this is far better than the situation with hypercubes.  However, a further refinement to the 
algorithm would be to calculate a value just below N (too few hyperrectangles) as well as a value just 
above N (too any hyperrectangles) and pick the one closest to N. 

For example, set s=9, N=10,000.
3*3*3*3*3*3*3*2*2 < 10,000 <  3*3*3*3*3*3*3*3*2
8,748 < 10,000 < 13,122

Since  8,748 is closer to 10,000 than 13,122, pick 8,748.  Then we randomly increase the number of 
points by 14.31% instead of throwing away 23.79% of the samples.  As of this writing, the BFS 
algorithm doesn’t incorporate this refinement.

It’s obvious that adding additional points to a sequence will not decrease it’s capabilities.  Likewise, 
removing a few points will have virtually no affect.  But these additional points will not further refine 
the sample space in the same way that sequence members do.

Numerial Results

One-Dimensional Integration

Consider the problem of estimating the intergral

θ=∫
I s

f (x )dx

In both MC and QMC we estimate the integral by taking averages, as shown:

θN=
1
N
∑
i=1

N

f (xn)dx

The error of the Crude MC method decreases as  
1

√(N)
,  but with stratification sampling, one can 

achieve at best
1
N

.  Stratified sampling can be considered a variance reduction technique.  As such, 

stratified sampling with proportional allocation can only decrease variance, by Glasserman [1].

We will compare experimental results using one-dimensional integration of various functions.  Results 
using BFS sequences are compared with pseudorandom sequences and random-shift Halton sequences. 
All of the integrals are evaluated from 0 to 1.  The source code is in the file Integration multi 
dimensional.ipynb.  



f = ex , m = 40 simulations
Sequence Type N=1,000 (samples) N=10,000 N=100,000

Pseudorandom 6.79e-02% 1.72e-02 1.89e-02% 4.70e-03 3.17e-03% 1.63e-03

Halton 3.08e-03% 7.73e-04 1.09e-04% 9.16e-05 4.66e-05% 1.05e-05

BFS 3.47e-05% 1.43e-05 6.15e-07% 5.28e-07 1.08e-07% 1.62e-08

Pct error std Pct error std Pct error std

f = √(1−x2
) , m = 40 simulations

Sequence Type N=1,000 (samples) N=10,000 N=100,000

Pseudorandom 1.99e-01% 2.60e-02 1.29e-02% 9.16e-03 4.00e-03% 3.00e-03

Halton 1.63e-02% 2.11e-03 2.75e-03% 2.16e-04 9.26e-05% 2.76e-05

BFS 7.60e-04% 8.79e-05 3.51e-06% 2.36e-06 7.66e-07% 8.37e-08

Pct error std Pct error std Pct error std

f = √(x+√(x )) , m = 40 simulations
Sequence Type N=1,000 (samples) N=10,000 N=100,000

Pseudorandom 9.94e-02% 7.92e-03 8.97e-02% 2.47e-03 8.75e-04% 6.31e-04

Halton 9.16e-03% 6.27e-04 1.23e-04% 7.63e-05 1.05e-04% 7.22e-06

BFS 1.80e-04% 3.59e-05 4.41e-05% 2.13e-06 1.08e-06% 9.01e-08

Pct error std Pct error std Pct error std

f = sin(x )
2
+2sin(2 x )

4 , m = 40 simulations
Sequence Type N=1,000 (samples) N=10,000 N=100,000

Pseudorandom 4.24e-01% 2.44e-02 1.03e-01% 1.08e-02 6.22e-03% 2.98e-03

Halton 2.85e-02% 8.25e-04 1.61e-04% 1.19e-04 1.80e-04% 1.31e-05

BFS 4.46e-05% 2.99e-05 6.86e-07% 9.88e-07 1.83e-07% 3.17e-08

Pct error std Pct error std Pct error std

For the one-dimensional case, BFS easily has the best results.  This may be because BFS exactly splits 
up the intervals proportionally, while Halton will be more refined in some locations than others.



Multi-Dimensional Integration

We now present the results of integration from 1 to 15 dimensions.  Again, we compare BFS to 
pseudorandom and random-shift Halton.  For each simulation, we used N=10,000 samples and 
N=100,000 samples repeated m=40 times and averaged together.  Refer to the the file Integration multi 
dimension.ipynb for the functions that were used and the exact values of their integration.  The 
functions are named  fn_1d,…,fn_15d.  The results are displayed in the two graphs below.



The graphs no doubt prove the power of the Halton sequence.  However, BFS did well in every 
dimension when N=100,000 samples were used.  Although the results using Random-shift Halton are 
the best, BFS clearly outperforms pseudorandom.  In contrast to the expected behavior for stratified 
sampling, BFS also gives good results in higher dimensions. 

Pricing of European Call Options

Consider a European call option with parameters:
T = expiry = 1, K = exercise price = 50; r = 0.1; σ = 0.3; S0  = 50. 0 = 50.

Code was written to compute the Black-Scholes-Merton price of the option, i.e., the exact option price. 
The source code is included in brownian motion.ipynb.  The code is based on formulas presented in 
Hull’s book on Derivatives.  (Reference: John C. Hull (2003), "Options, Futures, and Other 
Derivatives", 5th Edition, pg. 246-249).  The call option price was calculated to be $8.37.  An online 
options calculator was used to verify the correctness of this result.
(check answer: https://goodcalculators.com/black-scholes-calculator/)

For the simulation, we obtain 40 “independent” estimates for the price of the option.
For each estimate, use N = 10,000 price paths. To simulate a path, we simulate the geometric
Brownian motion model with μ = r, and using 10 time steps 0  = 0, 1  = ∆t, 2  = 2∆t, ..., 10  =  𝑡0  = 0,  𝑡1  = ∆t,  𝑡2  = 2∆t, ..., 𝑡10  =  𝑡0  = 0,  𝑡1  = ∆t,  𝑡2  = 2∆t, ..., 𝑡10  =  𝑡0  = 0,  𝑡1  = ∆t,  𝑡2  = 2∆t, ..., 𝑡10  =  𝑡0  = 0,  𝑡1  = ∆t,  𝑡2  = 2∆t, ..., 𝑡10  = 
10∆t = T.  For the Anderson-Darling test, we use Case 2 : F(x) is the normal distribution, μ known,

σ2 estimated (Reference: 2008 Stephens.pdf).  The A2 critical values are:

15% 10% 5% 2.5% 1%

N/A 1.760 2.323 2.904 3.690

Six types of simulations were conducted, Box-Muller (pseudorandom), Box-Muller (Halton),  Box-
Muller (BFS), Beasley-Springer-Moro (pseudorandom), Beasley-Springer-Moro (Halton), and Beasley-
Springer-Moro (BFS).  The results are given in the table below.

Simulation Type Price Pct error sd A2 Reject @5%
(2.323)

Box-Muller (pseudorandom) 8.38 2.08e-01% 1.23e-01 0.79 No

Box-Muller (Halton) 8.36 3.46e-02% 3.36e-02 0.93 No

Box-Muller (BFS) 8.36 7.67e-02% 8.74e-02 0.46 No

Beasley-Springer-Moro 
(pseudorandom)

8.33 3.93e-01% 1.18e-01 2.13 No

Beasley-Springer-Moro 
(Halton)

8.37 4.08e-02% 2.37e-02 0.60 No

Beasley-Springer-Moro 
(BFS)

8.38 1.17e-01% 9.41e-02 0.33 No

https://goodcalculators.com/black-scholes-calculator/


H0 - estimates should be distributed according to the normal distribution whose mean is the true 
option price you found, and an unknown variance.

At the 5% level, we can not reject the hypothesis for any of the estimates, since A2 < 2.323 for each 
simulation type.

Based on lower A2 , Beasley-Springer-Moro (BFS) produced the best result.  However, Box-Muller 
(Halton) had the lowest Pct error, and Beasley-Springer-Moro (Halton) had the lowest standard 
deviation. 

Critique of BFS

We are now in a position to directly answer the objections raised in the “Introduction” regarding 
Stratified Sampling and how BFS addresses some of these concerns.  They are repeated here for 
convenience.

i. We must know in advance how many samples will be taken by Hull [3]
ii. The sequence can’t be extended easily without restarting the simulation
iii. Stratified sampling is impractical for dimensions greater than about s=5 by Glasserman [1]
iv. Jittered Stratified sampling or hypercube construction suffers from the “curse of 

dimensionality” by Jarosz [2]
v. Completely dividing the hypercube in sub-hyperrectangles forces the value of N, i.e. one can’t 

freely pick N

(i, ii) If the application demands being able to extend the sequence during simulation, then BFS 
shouldn’t be used.  The hybrid BFS sequence can readily be extended through the addition of 
pseudorandom vectors, but the quality of the sequence will tend toward a pseudorandom sequence.

(iii) BFS has proved practical well beyond the suggest limit of dimension s=5.  Good results were 
obtained through s=15.  BFS likely would continue to perform well until at least s=20.  At s=20, if the 
vector list is N=1,000,000 in length, then each dimension will have 2 partitions.  If N=1,000, half of the
dimensions will have 2 partitions and the other half 1 dimension.  This configuration should still 
outperform pseudorandom.

(iv) Through simulation, this statement has been demonstrated to be true, and thus BFS utilizes 
hyperrectangle construction instead of hypercubes.

(v) This has been mitigated by a hybrid strategy of randomly removing samples.  Alternatively, 
pseudorandom samples could be added to a BFS sequence to bring the sample size up to the desired N.



Conclusion

The numerical results suggest that the BFS sequence may be useful as an alternative to pseudorandom 
sequences and random-shift Halton sequences for dimensions up to s=15 and possibly as high as s=20. 
For dimensions 2 though 15, BFS performance fell between crude MC and random-shift Halton on the 
example problems.  For s > 2, the BFS algorithm isn’t as easy to implement as random-shift Halton.  
BFS was much faster than random-shift Halton, and almost as fast as crude MC.  This could be a 
compelling reason to choose BFS over random-shift Halton.  However, more work would need to be 
done to optimize both implementations, run simulations, and compare them before such a conclusion 
could be reached.  For s=1, BFS can be implemented in a little as a single line of code (depending on 
the language chosen), and is far simpler than random-shift Halton.  BFS easily outperformed random-
shift Halton on the example problems for s=1.  If N can be fixed for a simulation, then BFS is the best 
method to use for s=1.
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